2.1 **Encontrar:** $\int \frac{e^{\ln x}}{x^2+7} dx$

Solución.- Como: $\hat{e}^{\ln x} = x$, se tiene que:

$$\int \frac{e^{\ln x}}{x^2 + 7} dx = \int \frac{x}{x^2 + 7} dx$$

Sea la sustitución: $u = x^2 + 7$ y du = 2xdx, pero se debe despejar dx de contantes, así que $\frac{du}{2} = xdx$

Dado que: $\int \frac{x}{x^2+7} dx = \frac{1}{2} \int \frac{x}{x^2+7} dx$

Se tiene: $\int \frac{x}{x^2+7} dx = \frac{1}{2} \int \frac{du}{u}$, integral que es inmediata. Luego: $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln|\mathbf{u}| + c = \frac{1}{2} \ln|x^2 + 7| + c$

Respuesta:

$$\int \frac{e^{\ln x}}{x^2 + 7} dx = \frac{1}{2} \ln |x^2 + 7| + c$$

2.2 Encontrar: $\int \frac{e^{\ln x^2}}{x^3 + 8} dx$ Solución.- Como: $e^{\ln x^2} = x^2$, se

 $\int \frac{e^{\ln x}}{x^3 + 8} \, dx = \int \frac{x^2}{x^3 + 8} \, dx$

Sea la sustitución: $u = x^3 + 8$ y $du = 3x^2 dx$, pero se debe despejar dx de contantes, así que $\frac{du}{3} = x^2 dx$

Dado que: $\int \frac{x^2}{x^3+8} dx = \frac{1}{3} \int \frac{x}{x^2+7} dx$ Se tiene: $\int \frac{x}{x^2+7} dx = \frac{1}{2} \int \frac{du}{u}$, integral que es inmediata. Luego: $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| + c = \frac{1}{2} \ln |x^2 + 7| + c$

Respuesta

$$\int \frac{e^{\ln x}}{x^2 + 7} dx = \frac{1}{2} \ln |x^2 + 7| + c$$

2.3 Encontrar: $\int (x+2) \sin(x^2+4x-6) dx$ Solución.- Sea la sustitución: $u = x^2 + 4x - 6$ y

du = (2x + 4)dx , se factoriza el 2 y se despeja $\therefore \frac{du}{2} = (x+2)dx. \text{ Dado que: } \int (x+2)\sin(x^2+4x-1)$

6) dx, Se sustituye y obtenemos: $\frac{1}{2}\int \sin(u) du$, integral que es inmediata.

 $\frac{1}{2}\int\sin(\mathbf{u})\,d\mathbf{u} = -\frac{1}{2}\cos\mathbf{u} + c =$ $-\frac{1}{2}\cos(x^2+4x-6)+c$

Respuesta

$$\int (x+2)\sin(x^2+4x-6) dx = -\frac{1}{2}\cos(x^2+4x-6) + c$$

2.4 Encontrar: $\int x \sin(1-x^2) dx$

Solución.- Sea la sustitución: $u = 1 - x^2$ y du =-2x dx, pero de debe despejar dx de constantes, se despeja el -2 $\therefore \frac{du}{-2} = x \, dx$. Dado que: $\int x \sin(1 - x) \, dx$ $(x^2) dx$, Se sustituye y obtenemos: $-\frac{1}{2} \int \sin(\mathbf{u}) d\mathbf{u}$, integral que es inmediata.

Se tiene:

$$\frac{1}{2} \int \sin(u) \, du = -\frac{1}{2} (-\cos u) + c$$
$$= \frac{1}{2} \cos(1 - x^2) + c$$

Respuesta:

$$\int x \sin(1 - x^2) \, dx = \frac{1}{2} \cos(1 - x^2) + c$$

2.5 Encontrar: $\int x \cot(x^2 + 1) dx$

Solución. - Sea la sustitución: $u = 1 + x^2$ y du = 2x dx, pero de debe despejar dx de constantes, se despeja el 2 $\therefore \frac{du}{2} = x \, dx$. Dado que: $\int x \cot(1+x^2) \, dx$, Se sustituye y obtenemos: $\frac{1}{2} \int x \cot(u) du$, integral que es inmediata.

tiene: $\frac{1}{2} \int x \cot(\mathbf{u}) d\mathbf{u} = \frac{1}{2} [\ln|\sin(\mathbf{u})|] + c =$ $\frac{1}{2}\ln|\sin(1+x^2)| + c$

Respuesta:

$$\int x \cot(x^2 + 1) \ dx = \frac{1}{2} \ln |\sin(1 + x^2)| + c$$

2.6 Encontrar: $\int y^3 \sqrt{1+y^4} \, dy$

Solución.- Sea la sustitución: $u = 1 + y^4$ y du = $4y^3 dy$, pero de debe despejar dy de constantes, se el 4 $\therefore \frac{du}{4} = y^3 dx$. que: $\int y^3 \sqrt{1+y^4} \, dy$, Se sustituye y obtenemos: $\frac{1}{4} \int \frac{u^{\frac{1}{2}}}{du}$, integral que es inmediata.

Se tiene:
$$\frac{1}{4} \int \frac{u^{\frac{1}{2}}}{du} = \frac{1}{4} \left[\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1} \right] + c = \frac{1}{4} \left[\frac{u^{\frac{3}{2}}}{\frac{3}{2}} \right] + c =$$
$$\frac{1}{4} \left[\frac{2u^{\frac{3}{2}}}{3} \right] + c = \frac{2u^{\frac{3}{2}}}{6} + c = \frac{2}{6} (1 + y^4)^{\frac{3}{2}} + c$$

$$\int y^3 \sqrt{1+y^4} \, dy = \frac{2}{6} \sqrt{(1+y^4)^3} + c$$

2.7 Encontrar: $\int \frac{3t}{\sqrt[3]{t^2+3}} dt$

Solución.- Sea la sustitución: $u = t^2 + 3$ y du = 2t dt, pero de debe despejar dt de constantes, se despeja el 2 : $\frac{du}{2} = t \ dt$. Dado que $\int \frac{3t}{\sqrt[3]{t^2+3}} dt$:, Se sustituye y obtenemos: $\frac{3}{2} \int \frac{du}{1}$, integral que es inmediata.

Se tiene:

$$\frac{3}{2} \int \frac{du}{u^{\frac{1}{3}}} = \frac{3}{2} \int (u)^{-\frac{1}{3}} du = \frac{3}{2} \left[\frac{(u)^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} \right] + c =$$

$$\frac{3}{2} \left[\frac{(u)^{\frac{2}{3}}}{\frac{2}{3}} \right] + c = \frac{3}{2} \left[\frac{3(u)^{\frac{2}{3}}}{2} \right] + c = \frac{6}{4} (u)^{\frac{2}{3}} + c$$

$$= \frac{6}{4} (t^2 + 3)^{\frac{2}{3}} + c$$

$$\int \frac{3t}{\sqrt[3]{t^2+3}} dt = \frac{6}{4} (t^2+3)^{\frac{2}{3}} + c = \frac{6}{4} \sqrt[3]{(t^2+3)^2} + c$$

2.8 Encontrar: $\int \frac{dx}{\sqrt[3]{a+bx}} = \int \frac{dx}{(a+bx)^{\frac{1}{2}}}$, donde a y b son constantes.

Solución.- Sea la sustitución: u = a + bx y du = b dt, pero de debe despejar dx de constantes, se despeja b $\therefore \frac{du}{b} = dx$. Dado que $\int \frac{dx}{(a+bx)^{\frac{1}{3}}}$: Se sustituye y obtenemos: $\frac{1}{b} \int \frac{du}{1}$, integral que es inmediata.

Se tiene:

$$\frac{1}{b} \int \frac{du}{u^{\frac{1}{3}}} = \frac{1}{b} \int (u)^{-\frac{1}{3}} du = \frac{1}{b} \left[\frac{(u)^{-\frac{1}{3}+1}}{-\frac{1}{3}+1} \right] + c =$$

$$\frac{1}{b} \left[\frac{(u)^{\frac{2}{3}}}{\frac{2}{3}} \right] + c = \frac{1}{b} \left[\frac{3(u)^{\frac{2}{3}}}{2} \right] + c = \frac{3}{2b} (u)^{\frac{2}{3}} + c =$$

$$\frac{3}{2b} (a + bx)^{\frac{2}{3}} + c$$

Respuesta

$$\int \frac{1}{\sqrt[3]{a+bx}} dx = \frac{3}{2b} (a+bx)^{\frac{2}{3}} + c = \frac{3}{2b} \sqrt[3]{(a+bx)^2} + c$$

2.9 Encontrar: $\int \sqrt{\frac{\arcsin x}{1-x^2}} dx = \int \frac{\sqrt{\arcsin x}}{\sqrt{1-x^2}} dx$ Solución.- Sea $u = \arcsin x$ y $du = \frac{dx}{\sqrt{1-x^2}}$

Luego:

$$\int \frac{\sqrt{\arcsin x}}{\sqrt{1 - x^2}} dx = \int \frac{u^{\frac{1}{2}}}{2} du = \frac{2}{3} u^{\frac{3}{2}} + c = \frac{2}{3} (\arcsin x)^{\frac{3}{2}} + c$$

Respuesta

$$\int \sqrt{\frac{\arcsin x}{1 - x^2}} dx = \frac{2}{3} (\arcsin x)^{\frac{3}{2}} + c =$$

$$\frac{2}{3} \sqrt{(\arcsin x)^3} + c$$

2.10 **Encontrar:** $\int \frac{\arctan \frac{\hat{z}}{2}}{4+x^2} dx$

Solución.- Sea
$$u = \arctan \frac{x}{2} y$$
 $du = \frac{dx}{1 + (\frac{x}{2})^2} \cdot \frac{1}{2} dx =$

$$\frac{dx}{2+\frac{x^2}{2}}dx$$
 , se multiplica por 1 y se obtiene: $\frac{du}{du} = \frac{1}{2+\frac{x^2}{2}}$

$$\frac{2}{2}dx = \frac{2}{4+x^2}dx$$
, ahora despejamos ese 2 de mas.
 $\therefore \frac{du}{2} = \frac{dx}{4+x^2}$

$$\therefore \frac{du}{2} = \frac{dx}{4+x^2}$$

$$\int \frac{\arctan\frac{x}{2}}{4+x^2} dx = \frac{1}{2} \int u \, du = \frac{1}{2} \left[\frac{u^2}{2} \right] + c = \frac{1}{4} u^2 + c = \frac{1}{4} \left(\arctan\frac{x}{2} \right)^2 + c$$

Respuesta

$$\int \frac{\arctan\frac{x}{2}}{4+x^2} dx = \frac{1}{4} \left(\arctan\left[\frac{x}{2}\right]\right)^2 + c$$